Infinite ergodicity that preserves the Lebesgue measure

نویسندگان

چکیده

In this study, we prove that a countably infinite number of one-parameterized one-dimensional dynamical systems preserve the Lebesgue measure and are ergodic for measure. The consider connect parameter region in which exact one almost all orbits diverge to infinity correspond critical points weak chaos tends occur (the Lyapunov exponent converging zero). These results generalization work by Adler Weiss. Using numerical simulation, show distributions normalized these obey Mittag–Leffler distribution order 1 / 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lebesgue measure in the infinite - dimensional space ?

We consider the sigma-finite measures in the space of vector-valued distributions on the manifold X with characteristic functional

متن کامل

Lebesgue Measure

How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its length, which is used frequently in differentiation and integration. For any bounded interval I (open, closed, half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of course, the length of any unbounded...

متن کامل

Randomness – beyond Lebesgue Measure

Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a computability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (continuous) probability measure or a generalized Hausdorff measur...

متن کامل

Does there exist the Lebesgue measure in the infinite - dimensional space ?

We consider the sigma-finite measures in the space of vector-valued distributions on the manifold X with characteristic functional

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos

سال: 2021

ISSN: ['1527-2443', '1089-7682', '1054-1500']

DOI: https://doi.org/10.1063/5.0029751